Combined use of live-attenuated and inactivated influenza vaccines to enhance heterosubtypic protection

Li-Meng Yan, MD, Ph.D
Centre of Influenza Research,
School of Public Health,
The University of Hong Kong
Protection from commercial influenza vaccines is far from optimal when the vaccine strains *antigenically do not match* with the circulating viruses.

Currently licensed influenza vaccines have their limitations.

- live attenuated influenza vaccine (LAIV), inactivated influenza vaccine (IIV), and recombinant influenza vaccine (RIV)

Novel vaccination approaches.
Hierarchical clusters of HA subtypes

Aim of study

Subtype-specific influenza vaccines (Group 1 HA: H1 or H5)

Broadly cross protections

Level of cross protections induced by different combinations of vaccination regimens.

Highlights

I. Sequential vaccination can generate heterosubtypic protection against IAV.

II. Combined use of LAIV + IIV induces good cross protection.

III. Different vaccination regimens can induce different immune profiles.
Wyeth/IL-15/5Flu (5Flu)

- A novel vaccinia-based live-attenuated pentavalent vaccine
 1) HA, NA and NP (H5N1/A/Vietnam/1203/2004)
 2) M1 and M2 (H5N1/A/CK/Indonesia/PA/2003)
 3) Adjuvant human IL-15

- Previous studies revealed:
 a) Trigger both MHC I and II antigen processing machineries
 b) Elicit robust CD4 and CD8 T cell responses
 c) Induce good cross-protection.

Publications:

5Flu might be a promising candidate to serve as a universal vaccine.
4-dose sequential vaccination regimens in Balb/c mouse model

- 8-week old Balb/c mice.
- After sequential vaccination, either scarificed for No Challenge (NC)
- Or challenged (i.n.) with a lethal dose of heterologous IAV.

Sequential vaccinations generate strong cross-protection against infections caused by different subtypes

- For heterosubtypic protection, LAIV is more potent than IIV.
- Repeated immunization can lead to better protection.
Sequential vaccinations reduce severity of illness of infected mice

• Viral loads in the lungs, at 3 and 7 dpi

• Total protein concentration in BAL, at 7 dpi

➢ Group inH1/V: superior to IIV alone.

➢ Group inH1/V mice had the least lung injury.
Sequential vaccinations induce efficient cross-protective antibodies

- Serum, No Challenge

<table>
<thead>
<tr>
<th>Antigen</th>
<th>IgG1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V</td>
<td>inH1</td>
</tr>
<tr>
<td>Group 1 HA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sH1</td>
<td>80</td>
<td>2560</td>
</tr>
<tr>
<td>pdmH1</td>
<td>160</td>
<td>1280</td>
</tr>
<tr>
<td>Group 2 HA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H3N2/HK68</td>
<td>80</td>
<td>160</td>
</tr>
</tbody>
</table>

- Group inH1/V: ↑↑↑↑ IgG1.

<table>
<thead>
<tr>
<th>Antigen</th>
<th>IgG2α</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V</td>
<td>inH1</td>
</tr>
<tr>
<td>Group 1 HA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sH1</td>
<td><80</td>
<td>320</td>
</tr>
<tr>
<td>pdmH1</td>
<td><80</td>
<td><80</td>
</tr>
<tr>
<td>Group 2 HA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H3N2/HK68</td>
<td><80</td>
<td><80</td>
</tr>
</tbody>
</table>

- IIV: ↑↑ IgG2α against Group 1 HA
Sequential vaccinations induce efficient cross-protective antibodies

- Influenza-NP specific IgG1 Ab profiles.
 - Serum, NC Vs at 7 dpi.
 - Group inH1/V: ↑↑↑ IgG1.
Sequential vaccinations induce efficient cross-neutralizing antibodies

- In serum, with Geometric mean titers (GMT).

- At 7 dpi

 - Group inH1/V: most potent regimen after infections.

 - NO pre-existing cross-nAbs induced by sequential vaccination regimens.
Sequential vaccinations improve influenza-specific T-cell responses

- Influenza immunodominant NP or HA epitope-specific CD8 T-cell responses.
- For Type-1 cytokines (IFN-γ, TNF-α, IL-2) and Type-2 (IL-4).

 Group inH1/V: type 1 CKs against NP and HA, including mono-functional and poly-functional (IFN-γ+TNF-α+)

 Group inH1/H5: NP-specific responses.

 No good IL-2 and IL-4.
Influenza immunodominant NP or HA epitope-specific CD4 T-cell responses.

For Type-1 cytokines (IFN-γ, TNF-α, IL-2) and Type-2 (IL-4).

Sequential vaccinations improve influenza-specific T-cell responses

- Group inH1/H5: TNF-α against NP and HA.
- Group V: TNF-α against NP.
- Different vaccine compositions induce different biases in T cell responses.
Sequential vaccinations exert effectively localized recall of CD8 T cell responses against heterologous IAV

- In BAL, at 7 dpi.
 - Good Tc1 CKs were detected.
 - Group inH1/V: ↑↑↑ against HA after H1N1 or H3N2.
 - Groups inH1 and inH1/H5: ↑↑ NP-induced responses after a H1N1, but not H3N2.
Sequential vaccinations exert effectively systemic recall of CD8 T cell responses against heterologous IAV

- In spleen, at 7 dpi.
 - Good Tc1 CKs were detected.
 - Group inH1/V: ↑↑ against HA after H1N1 or H3N2.
 - Groups V: ↑ NP-induced responses after a H1N1, but not H3N2.
Summary

1. All studied 4-dose vaccinations could induce some degrees of heterosubtypic protection in mice.

2. Combined use of LAIV + IIV vaccines could achieve the best heterologous protection.
Conclusion

• Potential benefits of combined use of LAIV + IIV vaccines.

• Best protection against lethal challenge of heterologous IAV in mice.

• Developing alternative vaccine strategies for universal protection.

• Relevant immunologic information.
Acknowledgement

Prof. Leo LM POON
Prof. Malik PEIRIS
Dr. Olive TW LI
Dr. CM POH
Dr. Ranawaka A.P.M. PERERA
Dr. Sophie A. VALKENBURGA

...AND our labmates

Funding
Health and Medical Research Fund of Hong Kong (HMRF14130962)
National Institutes of Health (NIAID contract HHSN272201400006C)
Research Grant Council of Hong Kong (Project No. T11-705/14N).